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ABSTRACT

The problem of selecting good populations out of k normal

populations is considered in a Bayesian framework under exchange-

able normal priors and additive loss functions. Some basic

approximations to the Bayes rules are discussed. These approxima-

tions suggest that some well-known classical rules are "approxi-

mate" Bayes rules. Especially, it is shown that Gupta-type rules

are extended Bayes with respect to a family of the exchangeable

normal priors for any bounded and additive loss function.

Furthermore, for a simple loss function, the results of a Monte

Carlo comparison of Gupta-type rules and Seal-type rules are

presented. They indicate that, in general, Gupta-type rules per-

form better than Seal-type rules. A
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I. INTRODUCTION

In many practical situations, the experimenter often faces

the problem of comparing several competing populations,treatments

or processes. The statistical methodology of ranking and selec-

tion procedures provides useful techniques for solving such prob-

lems. One of the basic formulations of the selection problem is

the subset selection formulation of Gupta (1956), under which we

select a random sized non-empty (small) subset of the populatiogs

while controlling the probability of including the 'best' popula-

tion in the selected subset. One modification of the basic goal

is concerned with the selection of "good" populations which are

defined below. Contributions in this direction have been made by

Fabian (1962), Desu (1970), Carroll, Gupta and Huang (1975), and

Panchapakesan and Santner (1977), among others. Moreover, Berger

(1979) and Bjirnstad (1980) have studied the minimaxity of some

well-known classical rules under various control conditions.

Let wit"'Ink be k independent normal populations with

unknown means 81,.. lek , respectively, and a common known variance.

Let the ordered ei be denoted by D0l]  ... [k]  A population i

is said to be

a good population if ai > e[k]-A,

a bad population if ei < [k]-A,

where A is a given positive constant. This definition implies

that the experimenter is willing to accept all the populations

which are sufficiently close to the 'best' population (i.e. the

populations associated with B[k]) while screening out the bad pop-

ulations. Thus it seems reasonable that any suitable loss func-

tion should contain two components: one depending on the bad pop-

ulations in the selected subset and another depending only on the

good populations excluded. Then the loss function of the follow-

ing type seems to be appropriate for our purpose: for

k (elt...,ek) and a {l,2,...,k} (a 0 *), let
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(1.1) L(Oa) a LB(0i-[k]+A) + iLG(0i-8rk +A)'

iEa B i ia G8L6k1i )

where LB is non-increasing, LG is non-decreasing, LB(y) = 0 for

y > 0 and LG(Y) = 0 for y < 0. Here the action a E a means that

we select the set {fi' iEa} as the set of good populations where a

is the action space consisting of all non-empty subsets of

{1,2,. .., k}. Any loss function of the type given in (1.1) will be

called additive.

Miescke (1979) has shown that the selection rule proposed by

Gupta (1956) is asymptotically Bayes as the sample size increases

for an additive loss function when the unknown means are assumed

to have an exchangeable normal prior. Also, he has studied the

approximations to the Bayes rules for an additive and linear loss

function i.e. the one corresponding to LB(y) = y- and LG(Y) = y+

with y (y) denoting the usual positive (negative) part of y.

In this paper, we assume that the unknown means I1... 'k

have an exchangeable normal prior. Under this assumption some

basic approximations to the Bayes rules for any additive loss

function are discussed. Gupta-type rules are shown to be extended

Bayes with respect the family of exchangeable normal priors for a

class of additive loss functions. Also, a Monte Carlo comparison

of two well-known classical rules with the Bayes rule is carried

out for a simple loss function. This empirical study as well as

our theoretical results support the earlier results of the Monte

Carlo studies by Chernoff and Yahav (1977), and Gupta and Hsu

(1978), which indicate that Gupta-type rules would perform as well

as the Bayes rule for a wide class of loss functions.

2. BAYES RULE AND APPROXIMATIONS TO BAYES RULE

Suppose that we have k independent samples of size n from

each population. By sufficiency we can reduce the problem to that

based on the sample means X1 .... Xk, whose common variance may be

assumed to be I without loss of generality.

It is assumed that the loss function is given by (1.1), and

.4

L ... ....
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we further assume that the unknown means e = (el....ek) have an

exchangeable normal distribution such that, for -(k-l) -  < p <

(2.1) E(ei) = m, Var(e i) = 2 Y i = ...,k), and

0
,o~ ej) = 2 (I< i< j< k).

Cvi  =pa0  (1 _

Gupta and Hsu (1978) and Miescke (1979) have used a representation

of 6i s similar to one given in (2.2) to reduce the prior to an

iid normal prior;

(2.2) (ei-m)/o o = I-z - ( F o

where Zo,Z1 ... ,Zk are standard normal random variables with

ZI,...,Zk being independent and Cov(Zo,Z i) = /p1//-p (i1, .. k).

Note that we can restrict ourselves to the translation invariant

rules 6 i.e. 6(x) = 6(x+w) for any w = (w,... ,w) E Rk in this

framework. Such a reduction is well presented in the next result.

Lemma 1. Let 6 be a translation invariant rule. Then the overall

risk wrt the prior in (2.1) can be written as follows; for a2

(2.3) r(a2,6) = f fL(e,6(x))dN(I2bx,bI)dN(xlJ,(l-b)-I),

2~ 2

where b = a2/(l+a 2), I is the kxk identity matrix and N(.jij)

denotes the distribution function of a multivariate normal distri-

bution with mean P and covariance matrix E.

Let x[l] <... < x[k] denote the ordered observations of

X1 ,... ,Xk and 'T(i) and e(i) denote the w and 8 associated with

for i l...,k. Then it follows from Lemma I that e(i) , a

posteriori, has normal distribution with mean bx[i ] and variance

b = a2/(l+a2). Now the Bayes rule given in the next result can be

easily derived by using the methods similar to those in Goel and
Rubin (1977).

Theorem 1. Assume that the loss function is given by (1.1). Then

the Bayes rule 6* wrt the prior in (2.1) always selects w(k)' and
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moreover it selects ( if and only if E[L(e(i )-[k]+)1x] < 0,

for i = 1,... ,k-I with L(.) LB(.) - LG(.).

Remark 1. Properties of the Bayes rule such as the monotonicity

and orderedness can be derived from Theorem 1 (see, for example,

Miescke (1979) and Kim (1979)).

Eventhough Theorem 1 gives a general description of the Bayes

rule for any additive loss function, a complete specification of

the Bayes rule requires the explicit form of z(-). Also, it

usually involves difficult computations to implement the Bayes

rule. So it is of practical significance to examine some basic

approximations to the Bayes rule, which are applicable to every

additive loss function provided they are easily computable. For

this purpose, we introduce the following notations: for i =
1, .... k-1,

(2.4)

x[k-l j ]'x~i] .. k-T j i xrj]-x[i),

kx .... o[,~ (x[j]-i]))

j=i+l

1 ([k]-X[i] ..... x[k]-X[i ])

D(xfl=E[z(O(j)ek+~

=E[A-E {max (ZJ-Zi+vb x~j]-Y- x[i]))+]'

where Z1,.... k are iid normal random variables. It follows from
a result in Marshall and Olkin (1974) that D(x) is Schur-convex

in xt. Also, note that D(xf) is non-decreasing in each argument

of x. Furthermore, it can be easily shown that we have the fol-
lowing inequalities:

(2 x* C (jiX );0..,0,1
2 1 -i ,x~j-x[i] '" . .(xlj]'xli]))'

where cL. a means that a is majorized by B.Hence, it follows
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from the Schur convexity of D(xt), (2.5) and the monotonicity of

D(x ) that, for i = 1,2,..., k-l,

-(26) -i -1_

E[ (-(ek)-~i)+)I] D(xT) D(xT).

'These bounds on D(x) and Theorem 1 suggest the "approximate"
2 2Bayes rules as follows; for b = a2/(l+a2),

(2.7) 61: Select '(k) and, for i = 1,... ,k-l, select (i iff

xi] 1 X[k] - dl(b)/ ,

62: Select n(k) and, for i = 1,..., k-l, select '(i) iff

x[ i ] 1 X[k] - 2(b)/,

63: Select ff(k) and, for i = 1,...,k-l, select i(i) ff

k
x~i] j= + I x[j]-d3(b)/v)(ki)

j=i+l

64: Select n(k) and, for i = 1,... ,k-l, select n(i) iff

x[i] 1-k---T jyi x[j]-l I /b

where dM(b)(j 1,2,3) are determined so that

(2.8) Hl(b,d)=Ez[A-Y ( max Zj-Z +d)+] 0 iff d < d
2<j k I

H2 (b,d)=EtCA-/- (Z2-Zl+d)
+] < 0 iff d < d2(b),

EU[A-V{max( 2<max Zj-ZlIZk-Zl+d)}+] <0 iff d < d3(b);

with Z, .... Zk being iid standard normal random variables. The

next result follows from (2.6) and Theorem 1.

Corollary 1. For any additive loss function given in (1.1), the

Bayes rule 6* wrt an exchangeable normal prior satisfies the fol-

lowing relations with probability one; for a = 1,3 and a = 2,4,

(2.9) 6 (x) z 6*(x) C 6x
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It should be pointed out that more approximations to the

Bayes rule can be obtained for a particular additive loss function

(see, for instance, Miescke (1979) and Kim (1979)). Also note

that, for k = 2, the "approximate" Bayes rules coincide so that

the Bayes rule can be explicitly specified.

It seems interesting to note that the "approximate" Bayes

rules except 63 are members of the class of the following well

known classical selection rules;

(2.10) 6 : Select r i iff xi = x[k] and/or xi > k-T j Ixjd

6 Select n iff x > X k]-d.

Rules 6m were proposed by Gupta (1956) for the goal of selecting

a subset containing the best population, and later studied by

Desu (1970) for selecting a subset consisting of only good popula-

tions. Rules 6a are modified versions of the selection rules pro-

posed by Seal (1955).

Note that one Gupta-type rule 61 always selects a smaller

subset than the Bayes rule while another rule 62 of the same

type selects a larger subset. Thus, one might expect that the

Gupta-type rules 6m would be close to the Bayes rule in some

sense. This is proved in Theorem 2 given below. First, we recall

the next definition (see, for example, Ferguson (1967)).

Definition 1. A decision rule 60 is called an extended Bayes rule

wrt a family 3 of prior distributions if, for every E > 0, there

exists a prior T E j such that r(T,60 ) < inf r(T,6) + E.

6
Also, we need the following conditions.

Conditions A.

(A-1) The loss function is additive with z(-) = LB(.)-LG(.)

being bounded.

1



(A-2) Let d denote the number d.(b) determined by (2.8)

for b = 1, and assume that they are finite (j=l,2).

Theorem 2. Suppose that Conditions A hold. Then, for d* < d-d,

the selection rules d are extended Bayes wrt the family of

exchangeable normal priors; in fact,

(2.11) lim [r(a,6m) - r(a,6*)] = 0,

where r(a,6) denotes the overall risk of a rule given by (2.3).

Proof. It follows from Theorem 1, Corollary I and (2.6) that, for

2
b -

+ 2

(i) 6*(x), r(i) E 6m(X)l c {0 < D(-il Hl(b,& d)),

(ii) {7(i) E 6*(x), (i) I 6m(x)) c [H2 (b,/F d) _< D(x ) < 01,

where H. (j = 1,2) are defined in (2.8). Let Ai and Bi denote the

events ) 6*(x), C(i) E 6m(x)} and {(i) E 6*(x),

1(i) 4 s(x)i, respectively. Then, (i) and (ii) imply that

k-l
(2.12) r(o,6d)-r(o,6*) E[ D(xf) (IIA.

i=l i 1

k-l<E[ [H 1Hl(b,V~b d)I A - H 2(b,b d)I Bi}]-

i= i

Since the condition (A-1) implies the continuity of H (b,d)

(j = 1,2), it can be easily shown that the monotonicity of Hj(b,d)

in b and d, the definition of d.(b) in (2.8) and the condition

(A-2) imply the following facts;

(iii) d.(b) is non-increasing in b (j = 1,2),

(iv) lim d.(b) = d* (j = 1,2),

b<l

(v) For d E (d l ,d 2 ], dl(b)/v'- < d < d2 (b)/lv' for b suffi-
ciently close to I and b < 1.
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It follows from (v), (2.9) and (2.12) that, for sufficiently large

o, I.e., for b sufficiently close to 1,

r (a,6 d)-r(a,*)

k-I

< {Hl(b,vd)H 2(b,V-d) P[d (b)/zb X i d2(b)/rb
1i=l b 1 [k- [i]

k -II
{Hl b',vrbd)-H 2(b", Ad)}~ P [ v/ - bdlI(b)<7 kj-Z[i] <. -

where Z[I] <...< Z[k ] are the ordered iid standard normal rardom

variables. Hence, it follows from Conditions A that

lim [r(o,6 )-r(o,5*)] = 0,

which completes the proof.

3. MONTE CARLO RESULTS FOR A SIMPLE LOSS FUNCTION

The well-known selection rules 6m and a in Section 2 are,

in some sense, natural approximations to the Bayes rule, and it is
shown that the Gupta-type rules 6m would perform as well as the

Bayes rule when the prior variance is large. In this respect, the

comparative performance of the Gupta-type rules m and the Seal-

type rules 6a was studied using Monte Carlo technique for a simple

loss function given as follows:

(3.1) L(9,a) = cI  Z I(_ _10)(N i- a[k + 2i-a +: iiaI[ '  - [ ]

where cI > 0, c2 > 0 and c1 +c2 = 1.

For this simple loss function, it follows from (2.3) that for

any translation invariart rule, the posterior risk is given by

(3.2) c, P6-,'x] + c 2  ' P[O(i
iE6(x) i4'(x)

where XP ... IXk are iid normal random variables with mean 0 and

variance l+c2 . Also, by Theorem 1, the Bayes rule is determined

by



f D (x t ) = C l P [ e(i )  > 8[ ]-)x

= cl-- f
-- j~i

where b 2 02/(l+2).
We carried out the Monte Carlo comparisons for k = 3 and

k = 9. The relevant parameters in this comparison study are ,2

and c1 (=1-c2 ), while c = c2/cI was used instead of cI since c

being the ratio of two different sources of losses, seems more

appealing than c1 , The range of the parameter values in this

report is as follows:

0.5, 1.0,

a : (1.5) i  (i = -2(1)6),

c = , 2, 4, 8

For each of parameter sets (, 400 simulations for k = 3 and

100 simulations for k = 9 were carried out. In each simulation,

the generation of k iid normal random variables X1 .... IXk with~2
mean 0 and variance 1+o was involved. The Bayes rule and its

posterior risk are obtained from (3.2) and (3.3) by numerically

computing D(xt)'s, where some of the computations can be omiLted

by using (2.9). Then, the estimated Bayes risk can be obtained by

taking the average of the posterior risks. Two sufficiently fine

grids of the constants d are used to obtain optimal values of d

for 6m and 6a which minimize the average regrets, where the range

of these trial values is determined by (2.9).

The estimated Bayes risk, the estimated regrets incurred byanda

the optimal 6m and the optimal ," are given in Table I along with

the sample standard deviations of these estimates. The cells left

blank in the table correspond to cases in which the Bayes rule

selects only one population or all the populations. It can be

observed from Table I that the perfcrmance of the Gupta-type rule

6m is almost as good as that of the Bayes rules, and that it per-

forms remarkably better when the prior variance becomes larger.
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This agrees with Theorem 2. Also, we observe that, for k 3, the

Seal-type rule 6a performs reasonably well though its performance

is not as good as the Gupta-type rule 6m
. However, for k = 9, the

rule 6a performs very badly and it was observed that, for most

values of o, the optimal 6a tends to select much larger subsets

than the Bayes rule as c becomes larger. In Figures la-lf, the

estimated risks of the Bayes, the optimal 6m and the optimal 6a

are shown graphically for A = 1.0 and soine selected values of c.

Table II gives the average number of the bad populations selected

and the average number of the good populations excluded by each

rule. Also, the proportions of times that the optimal 5m and the

optimal 6a coincide with the Bayes rule are presented graphically

in Figures 2a-2h.

Chernoff and Yahav (1977), and Gupta and Hsu (1978) have

observed the performance of the rule 6m similar to the one in this

stud) under certain loss functions for the goal of selecting a

subset containing the 'best' population. However, the performance

of 6a in the present study is worse than that observed by Gupta

and Hsu (1978), and it seems that the Seal-type rule has little to

recommend for the goal of selecting good populations. The results

of the present study and the previous ones mentioned above indi-

cate that the Gupta-type rule performs fairly well in various

formulations at least in the Bayesian framework considered in this

paper. However, it should be pointed out that the proper constant

d should be chosen according to the operating characteristics of

the particular problem considered before one chooses the constant

d based on any intuitive control condition. For this reason the

estimated optimal d-values of the rules 6m are provided in Table

I1, which can be used if one accepts the framework in this sec-

tion.
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TABLE I

The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

by the optimal 6m and by the optimal 6
a , respectively. The esti-

mated standard deviations of the estimates are given in the
parentheses.

k = 3, =0.5

C1 2 4 8

.4609 (.0016) .3297 (.0012) .1995 (.0008)
.44 .0024 (.0005) .0006 (.0002) .0000 (.0000)

.0334 (.0029) .0033 (.0008) .0001 (.0001)

.4686 (.0053) .3897 (.0026) .2558 (.0011) .1456 (.0001)
.67 .0038 (.0006) .0029 (.0005) .0010 (.0003) .0001 (.0001)

.0487 (.0028) .0185 (.0017) .0024 (.0006) .0000 (.0000)

.3872 (.0076) .3424 (.0056) .2511 (.0028) .1532 (.0014)
1.00 .0036 (.0006) .0027 (.0005) .0022 (.0004) .0011 (.0003)

.0175 (.0018) .0160 (.0016) .0053 (.0008) .0016 (.0004)

.2813 (.0088) .2710 (.0068) .2005 (.0045) .1361 (.0024)
1.50 .0027 (.0006) .0023 (.0005) .0020 (.0004) .0009 (.0002)

.0115 (.0015) .0180 (.0024) .0078 (.0013) .0033 (.0006)

.2033 (.0083) .1833 (.0072) .1561 (.0049) .0987 (.0030)
2.25 .0010 (.0005) .0010 (.0004) .0011 (.0003) .0009 (.0003)

.0103 (.0014) .0318 (.0034) .0148 (.0020) .0082 (.0011)

.1470 (.0083) .1274 (.0065) .1081 (.0050) .0662 (.0028)
3.38 .0006 (.0002) .0004 (.0002) .0007 (.0003) .0005 (.0002)

.0084 (.0013) .0343 (.0038) .0318 (.0030) .0159 (.0016)

.0984 (.0072) .1207 (.0060) .0726 (.0044) .0457 (.0025)
5.06 .0000 (.0000) .0008 (.0004) .0000 (.0000) .0002 (.0001)

.0045 (.0009) .0241 (.0032) .0379 (.0039) .0203 (.0020)

.0663 (.0061) .0564 (.0050) .0462 (.0038)1.0298 (.0021)
7.59 .0003 (.0001) .0002 (.0001) .0002 (.00001).0000 (.0000)

.0045 (.0010) .0184 (.0030) .0299 (.0041) .0277 (.0032)

.0335 (.0043) .0392 (.0043) .0287 (.0030) .0200 (.0019)
11.39 .0000 (.0000) .0000 (.0000) .0000 (.0000, .0001 (.0001)

.0026 (.0013) .0109 (.0022) .0248 (.0041) .0300 (.0038)

i . .. . ... ...... .. .. ..... . ... .. . ......... ... . ... ... .. . . .. . 1, .... .... .. ., .. ..... . . . . . ..... .. . I
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TABLE I

The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

by the optimal 6m and by the optimal 6 a , respectively. The esti-
mated standard deviations of the estimates are given in the
parentheses.

k =9, =0.5

1 2 4 8

1.5947 (.0148) 1.5322 (.0i18) 1.0429 (.0037)1.5953 (.0016)
.44 .0198 (.0033) .0296 (.0046) .0070 (.0018) .0011 (.9001)

.0603 (.0052) .2614 (.0170) .0306 (.0049)1.0017 (.0006)

1.1473 (.0193) 1.2235 (.0173) .9849 (.0118)1.6407 (.0051)
.67 .0083 (.0021) .0223 (.0041) .0222 (.0031)1.0112 (,0023)

.0083 (.0021) .2021 (.0099) .3029 (.0146)1.0735 (.00'5)

.7783 (.0234) .8272 (.0240) .7342 (.0179)i.5097 (.0106)
1.00 .0072 (.0028) .0233 (.0039) .0191 (.0035)1.013, (.0026)

.0108 (.0029) .107i (.0092) .3424 (.0164)1.2757 (.0126)

.5637 (.0237) .6126 (.0261) .5207 (.0194),.3625 (.0118)
1.50 .0064 (.0021) .0186 (.0041)1 .0107 (.0024)1.0101 (.0023)

.0096 (.0028) .0654 (.0078)1 .2469 (.0148).4252 (.0230)

.4021 (.0249) .3444 (.0202) .3389 (.0181)L2324 (.0124)
2.25 .0043 (.0018) .0051 (.0024) .0062 (.0019)1.0067 (.0016)

.0054 (.0016) .0443 (.0068) .1228 (.0141)1.1368 (.0172)

.2420 (.0209) .2662 (.0211)1 .1925 (.0154)1.1559 (.0120)
3.38 .0015 (.0010) .0032 (.0010)1 .0032 .CO13) ,0019 (.0007)

.0053 (.0018) .0424 (.0081)1 .0815 (.0130).1092 (.0136)

.1868 (.0191) .1284 (.0150) .1590 (.0152) ,0924 (.0093)
5.06 .0004 (.0003) .0005 (.0004) .0032 (.0012) .0017 (.0008)

.0128 (.0029) .0304 (.0071) 0683 (.0109)!.0880 (.0134)

.1114 (.0153) .0972 (.0134), .1101 (.0123)1.0583 (.0071)
7.59 .0001 (.0001) .0012 (.0009) .0009 (.0005)1.0003 (.0003)

.0041 (.0021) .0357 (.0078) .0852 (.0143) .0783 (.0121)

.0622 (.0121) .0754 (.0115) .0698 (.0113) .0421 (.0064)
11.39 .0001 (.0001) .0000 (.0000) .0014 (.0007):.0000 (.0000)

.0059 (.00 26 ) .0 236 (.00 6 9)'. 044 1 .0099)1.0629 (.0107)
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TABLE I

The entry on top of each cell is the estimated Bayes risk and the

numbers in the second and the third row are the regrets incurred

by the optimal Sm and by the optimal 6a, respectively. The esti-
mated standard deviations of the estimates are given in the
parentheses.

k - 3, A 1.0

C1 2 4 8

.J462 (.0018)
.44 (O0 (.0000)

.0001 (.0001)

.3213 (.0027) .2276 (.0023) .1435 (.0017'1
.67 .0016 (.0003) .0011 (.0003) .0000 (.0000)

..0315 (.0034) .0035 (.0009) .0001 (.0001)

-3515 (.0046) .2969 (.0032) .1989 (.0019) .1158 (.0012)
1.00 .0018 (.0004) .0023 (.0005) .0011 (.0003) .0002 (.0001)

.0774 (.0044) .0293 (.0028) .0087 (.0012) .0013 (.0005)

2.948 (.0066) .2613 (.0052) .1922 (.0032) .1227 (.0018)
1.50 .0022 (.0005) .0030 (.0006) .0022 (.0005) .0008 (.0002)

.0385 (.0034) .0228 (.0024) .0135 (.0016) .0056 (.0008)

2117 (.0075) .1922 (.0061) .1488 (.0042) .1C,15 (.0025)
2.25 .0O9 (.0003) .0009 (.0003) .0011 (.0003) .0009 (.0002)

.0389 (.0041) .0272 (.0032) .0150 (.0019) .0067 (.0010)

..1438 (.0069) .1344 (.0060) .1049 (.0040) .0661 (.0026)
3.38 .0005 (.0002) .0008 (.0003) .0009 (.0003) .0004 (.0002)

.0296 (.0033) .0435 (.0046) .0198 (.0024) .0141 (.0015)

.0997 (.0067) .0888 (.0055) .0682 (.0039) .0482 (.0025)
5.06 .0005 (.0003) .0005 (.0003) .0004 (.0002) .0003 (.0001)..0Z31 (.0030) .0478 (.0052) .0385 (.0036) .0222 (.0020)

.0625 (.0052) .0608 (.0046) .0476 (.0033) .0335 (.0022)
7.59 .0001 (.0001) .0002 (.0001) .0000 (.0000) .0001 (.0001)

.0182 (.0028) .0384 (.0047) .0366 (.0043) .0251 (.0022)

.X376 (.0041) .0416 (.0042) .0323 (.0029) .0207 (.0019)
11.39 .0o00 (.0000) .0001 (.0001) .0001 (.0001) .0001 (.0001)

.0086 (.0019) .0329 (.0048) .0438 (.0059) .0358 (.0025)
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TABLE I

The entry on top of each cell is the estimated Bayes risk and the
numbers in the second and the third row are the regrets incurred

by the optimal 6m and by the optimal 6a, respectively. The esti-
mated standard deviations of the estimates are given in the
parentheses.

k =9, =1.0

oc1 2 4 8
1.0626 (.0097) .7235 (.0076) 1

.44 .0073 (.0022) .0000 (.0000)
.0175 (.0048) .0005 (.0005)

1.4650 (.0147) 1.2372 (.0097) .8253 (.0065) .4712 (.0045)
.67 .0256 (.0052) .0284 (.0062) 0053 (.0013) .0020 (.0009)

.6476 (.0328) .1879 (.0180) .0242 (.0050) .0041 (.0015)

1.0771 (.0300) 1.0578 (.0200) .8267 (.0119)1 .5314 (.0063)
1.00 .0212 (.0038) .0283 (.0050) .0245 (.0045) .0122 (.0025)

.1833 (.0116) .5966 (.0264) .3253 (.0190)1.0991 (.0085)

.7150 (.0280) .7205 (.0264) .6264 (.0203)1 .3998 (.0117)
1.50 .0178 (.0042) .0154 (.0035) .0119 (.0025)1 .0103 (.0020)

.1088 (.0095) .3235 (.0219) 6319 (.0311)i .3399 (.0165)

.4724 (.0264) .4437 (.0269) .4031 (.0199)1 .2852 (.0132)
2.25 .0071 (.0019) .0061 (.0019) .0055 (.0014) .0082 (.0022)

.0685 (.0088) .1925 (.0177) .4051 (.0293)l .5105 (.0170)

.2580 (.0227) .2926 (.0237) .2417 (.0154) .17 3? (.0112)
3.38 .0021 (.0013) .0050 (.0018) 1.0043 (.0013)i .0022 (.0009)

.0299 (.0062) .1266 (.0172) .2275 (.0239)j .3120 (.0349)

.1680 (.0167) .1920 (.0165) .1211 (.0124Y .1027 (.0078)
5.06 .0006 (.0005) .0006 (.0003) .0024 (.0014) .0010 (.0006)

.0257 (.0061) .1062 (.0159) .1277 (.0193)1 .1334 (.0158)

.1149 (.0158) .1331 (.0158) .1126 (.0115)' .0566 (.0070)
7.59 .0011 (.0006) .005 (.0007) .0019 (.0009) .0005 (.0003)

.0279 (.0066) .0642 (.0120) .1009 (.0170) .1124 (.0198)

.0617 (.0113) .0668 (.0122) .0694 (.0088) .0364 (.0049)
11.39 .0000 (.0000)1 .0001 (.0001) .0000 (.0000) .0000 (.0000)

.0111 (.0041) 0262 (.0073) .0931 (.0185) .0501 (.0118)

1I
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TABLE I I

The rows in each cell correspond to the Bayes, the optimal 5m and

and the optimal 6a from top to bottom. The entries in the first
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded, respec-
tively.

k = 3, A = 0.5

C 1 2 4 8
..7662 .1556 .9525 .0184 .9940 .0009

.44 .7661 .1604 .9631 .0140 .9940 .0009
.9684 .0202 .9974 .0008 .9950 .0000

.5349 .4023 .9472 .1109 1.2105 .0172 1.2916 .0024
.67 .5113 .4337 .9617 .1080 1.2335 .0126 1.3029 .0011

.5249 .5098 1.1306 .0469 1.2409 .0125 1.2961 .0018

.3694 .4051 .6767 .1752 .9962 .0649 1.2349 .0179
1.00 .3417 .4399 .6810 .1770 1.0264 .0601 1.2605 .0160

.3007 .5089 .7794 .1479 1.0775 .0512 1.2254 .0209

.2529 .3098 .4931 .1599 .7029 .0749 .9663 .0323
1.50 .2518 .3162 .4971 .1614 .7208 .0728 1.0072 .0282

.1932 .3926 .5378 .1646 .7927 .0622 1.0207 .0292

.1848 .2219 .3204 .1147 .5417 .0597 .7023 .0233
?.25 .1908 .2178 .3331 .1099 .5727 .0533 .7143 .0227

.1238 .3034 .3289 .1582 .6485 .0516 .7927 .0211

.1498 .1443 .2131 .0845 .3733 .0418 .4674 .0168
3.38 .1542 .1412 .2186 .0824 .3740 .0425 .4708 .0162

.1019 .2089 .1675 .1588 .5551 .0361 .6128 .0158

.0983 .0984 .1693 .0527 .2370 .0315 .2846 .0159
5.06 .0971 .0996 .1684 .0543 .2351 .0321 .2671 .0183

.0603 .1454 .0834 .1318 1 .3569 .0489 .5049 .0111

.0639 .0686 .0948 .0372 .1453 .0212 .1862 .0102
7.59 .0617 .0714 .0950 .0374 .1460 .0214 .1862 .0102

.0409 .1006 .0393 .0923 .0997 .0701 .3873 .0163

.0306 .0364 .0724 .0226 .0919 .0129 .1302 .0062
11.39 .0306 .0364 .0724 .0226 .0919 .0129 .1259 .0069

.0196 .0504 .0266 .0618 .0387 .0527 .2758 .0218
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TABLE II

The rows in each cell correspond to the Bayes, the optimal 6m

and the optimal 6a from top to bottom. The entries in the first
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded,
respectively.

k 9, A = 0.5

cI
S2 -4 8

.9132 2.2761 3.0660 .7653 4.8169 .0994 5.2816 .0095
.44 1.0130 2.2159 3.0756 ,8049 4.8959 .0883 5.3538 .0016

.3486 2.9614 5.3807 .0000 5.3676 .0000 5.3721 .0000

.4778 1.8168 1.6250 1.0223 3.3360 .3971 4.9058 .1076
.67 .3761 1.9351 1.7540 .9918 3.5822 .3633 4.7214 .1432

.3761 1.9351 .3805 1.9482 6.4389 .0000 6.4282 .0000

.4314 1.1253 .9308 .1755 2.0683 .4006 3.2729 .1643
1.00 .4686 1.1025 .9346 .8092 2.0634 .4257 3.1622 .1936

.3322 1.2461 .3246 1.2393 .3307 1.2630 7.0685 .0000

.3508 .7766 .7108 .5636 1,3636 .3100 2.2131 .1312
1.50 .3322 .8080 .6561 .6188 1.4223 .3087 2.2498 .1379

.2804 .8662 .2761 .8789 .2985 .8849 .5227 .8208

.2795 .5248 .4351 .2990 .9762 .1795 1.3742 .0896
2.25 .2937 .5191 .4602 .2941 .9984 .1817 1.3010 .1063

.2149 .6003 .1661 .4992 .7470 .3903 , 1.4132 .2386

.1924 .2916 .3815 .2086 .6387 .0810 .8702 .0666
3.38 .1990 .2881 .3913 .2085 .6179 .0902 .8632 .0696

.1477 .3469 .2572 .3343 .5281 .2105 1.1838 .1503

.2040 .1697 .1862 .0995 .4834 .0779 .5406 .0364
5.06 .2043 .1701 .1867 .1000 .5266 .0711 .5690 .0348

.1218 .2775 .0833 .1966 .3837 .1881 .5487 .1345

.0900 .1328 .1805 .0556 .3384 .0530 .3745 .0188
7.59 .0951 .1279 .1950 .0501 .3313 .0559 .3659 .0202

.0641 .1668 .0695 .1646 .2955 .1702 I .7284 .0827

.0639 .0605 .1262 .0501 .2148 .0335 .2707 .0135
11.39 .0589 .0655 .1262 .0501 .1842 .0429 2618 .0147

.0398 .0964 .0497 .1236 .0590 .1277 .4669 .0597

INV.
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TABLE II

The rows in each cell correspond to the Bayes, the optimal 6m and

the optimal 6a from top to bottom. The entries in the first
column and the second column are the average number of bad popula-
tions selected and that of good populations excluded, respectively.

k =3, = 1.0

Cc1 2 4 8

.2912 .0012
.44 .2912 .0002

.2925 .0000

.5272 .1155 .6525 .0152 .7129 .0011
.67 .5475 .0984 .6636 .0113 .7129 .0011

.6861 .0195 .6861 .0037 .7169 .0002

.4200 .2830 .7025 .0941 .8704 .0311 1.0064 .0045
1.00 .4355 .2710 .7314 .0831 .8795 .0302 1.0111 .0041

.6386 .2191 .8651 .0568 .9811 .0143 1.0188 .0044

.3104 .2793 .5297 .1270 .7252 .0590 .9434 .0202

1.50 .3064 .2877 .5494 .1218 .7453 .0566 .9642 .0184
.3776 .2890 .6358 .1082 .8686 .0399 1.0624 .0099

.2184 .2049 .3531 .1118 .5182 .0564 .7213 .0240
2.25 .2093 .2158 .3389 .1201 .5113 .0595 .7200 .0252

.1772 .3238 .4469 .1056 .6153 .0510 .8235 .0187

.1356 .1519 .2606 .0713 .3476 .0442 .4153 .0225
3.38 .1324 .1562 .2480 .0787 .3564 .0431 .4268 .0215

.0640 .2828 .3974 .0681 .4713 .0380 .5916 .0163

.0964 .1030 .1598 .0533 .2341 .0268 .3199 .0142
5.06 .0970 .1034 .1669 .0504 .2305 .0282 .3180 .0148

.0358 .2098 .0543 .1778 .3926 .0353 .5687 .0080

.0674 .0577 .1089 .0368 .1583 .0200 .2426 .0073
7.59 .0638 .0615 .1141 .0345 .1603 .0195 .2449 .0071

.0281 .1333 .0306 .1335 .2729 .0371 .4766 .0064

.0403 .0349 .0837 .0206 .1065 .0138 .1402 .0058
11.39 .0403 .0349 .0855 .0198 .1107 .0129 .1425 .0056

.0140 .0785 .0199 .1018 .0363 .0861 .4804 .0035
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TABLE II

The rows in each cell correspond to the Bayes, the optimal 6m

and the optimal 6a from top to bottom. The entries in the first
column and the second column are the average number of bad popu-
lations selected and that of good populations excluded,
respectively.

k = 9, A = 1.0

1 2 48

1.9926 .1325 2.1648 .0029
.44 2.0050 .0849 2.1648 .00291

2.1601 .0000 2.1719 .0000

1_6325 1.2974 2.8473 .4321 3.8555 .0678 4.1572 ,0104
.67 1.6381 1.3430 2.8424 .4772 3.9488 .0511 4.1682 .0113

4.2251 .0000 4.2752 .0000 4.2477 .00001 4.2768 .0000

.8150 1.3392 1.7229 .7252 2.9470 .29671 4.0555 .0909
1.00 .8561 1.3404 1.8779 .69021 3.0915 .29121 3.9255 .1209

.1683 2.3525 .1729 2.3952 5.7603 .00001 5.6146 .0000

.5275 .9024 1.0839 .5388 2.0030 .28231 2.6489 .1187
1.50 .4802 .9852 1.1259 .5409 1.9110 .3202 2.8192 .1090

.1563 1.4912 .1540 1.4890 .1469 1.5362 6.6510 .0008

.3851 .5597 .6039 .3637 1.1882 .2068 1.8056 .0951
2.25 .3572 .6019 .5833 .3831 1.2177 .2063 1.8583 .0978

.1286 .9532 .1097 .8995 .1212 .9799 7.1606 .0000

.1921 .3239 .4279 .2250 .7161 .1232 1.1018 .0571
3.38 .1992 .3210 .4329 .2300 .7603 .1174 1.0418 .0671

.a720 .5038 .1345 .5616 .3436 .5007 1.1293 .4047

.1376 .1984 .3050 .1355 .3050 .0752 .6648 .0324
5.06 .1483 .1891 .2722 .1527 .3234 .0735 .6924 .0301

.0583 .3291 .0912 .4017 .2887 .2388 1.5093 .0769

1225 .1073 .2137 .0928 .3130 .0625 .3697 .0174
7.59 .1086 .1234 .2286 .0876 .3149 .0644 .3791 .0169

.0455 .2403 .0713 .2604 .3099 .18941 .7931 .0909

.0569 .0665 .1308 .0349 .2497 .0243 .2103 .0147
11.39 .0569 .0665 .1376 .0316 .2497 .0243 .2192 .0136

.0230 .1225 .0236 .1227 .0788 .1834 .2337 .0682
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TABLE III

Estimated d values for the optimal 6m

o- , 1 2 4 8 1 2 4 8

k = 3, A = 0.5 k = 9, A = 0.5

.44 2.1572 3.7576 4.6502 .7906 2.0710 3.4991 5.0995

.67 1.0391 2.1839 3.3917 4.2796 .0000 1.2464 2.2379 2.8148

1.00 .6040 1.4808 2.3435 3.1461 .2222 .8727 1.6505 2.2304

1.50 .4939 1.2570 1.9361 2.6181 .1333 .6862 1.4193 2.0923

2.25 .5304 1.1760 1.8682 2.2840 .2595 .9927 1.4305 1.9776

3.38 .4552 1.1332 1.6755 2.3222 .4240 .9194 1.5243 1.8893

5.06 .4940 1.0801 1.6866 2.1657 .4329 .8559 1.3859 1.9873

7.59 .3775 1.0029 1.6789 2.2435 .4683 1.0987 1.3360 1.9157

11.39 .4938 1.1011 1.6307 2.0799 .2981 1.1815 1.3571 2.0548

k = 3, A 1.0 k =9, A 1.0

.44 5.3177 4.2282 5.2869

.67 2.9075 3.9441 5.0438 1.8799 2.9796 4.1874 5.1159

1.00 1.7525 2.6293 3.3965 4.1991 1.0949 2.0000 2.7778 3.1879

1.50 1.2341 2.0514 2.6403 3.3854 .7834 1.5887 2.2136 2.8867

2.25 1.0389 1.6517 2.3356 2.9320 .7598 1.3617 2.0292 2.6420

3.38 .9678 1.5832 2.2664 2.8035 .7958 1.3381 2.0995 2.4958

5.06 .9447 1.6608 2.1144 2.6623 1.0135 1.4671 2.0125 2.7515

7.59 .9013 1.5872 2.1949 2.7446 .7652 1.4258 1.9957 2.6211

11.39 .9977 1.5598 2.2023 2.7268 1.0730 1.6401 2.2073 2.7092
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FIG. la. Estimated risks of Bayes, optimal Gupta-type and optimal

Seal-type rules.
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FIG. lb. Estimated risk s of Bayes, optimal Gupta-type and optimal
Sea l-ty pe rules . k 3 , A 1 0 c 4 .
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FIG. lc. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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FIG. Id. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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FIG. le. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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FIG. If. Estimated risks of Bayes, optimal Gupta-type and optimal
Seal-type rules.
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FIG. 2a. Propartion of times the optimal Gupta-type rule coin-
cides with the Fiayes rule.

k 3, A 0. 5

0.9

0.7-

0.6-
C.. I.

0.5 - -

- - 4

- 8
0.4

0.3 -

0.2 -

0.1-

-_2 -1 0 1 2 3 4 5 6

Log 1.5 a



30

FIG. 2b. Proportion of times the optimal Seal-type rule coin-
cides with the Bayes rule.
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FIG. 2c. Proportion of times the optimal Gliptftype rule .-oircides
with the Bayes rule.
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FIG. 2d. Proportion of times the optimal Seal-type rule coincides
with the Bayes rule.
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FIG. 2e. Proportion of times the optimal Gupta-type rule coin-
cides with the Bayes rule.
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FIG. 2f. Proportion of times the optimal Seal-type rule coincides
with the Bayes rule.
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FIG. 2g. Proportion of times the optimal Gupta-typL rule coin-

cides with the Bayes rule.
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FIG. 2h. Proportion of times the optimal Seal-type rule coin-
cides with Bayes rule.
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results of a Monte Carlo comparison of Gupta-type rules and Seal-type rule,
are presented. They indicate that, in general, Gupta-type rules perform
better than Seal-type rules.
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